随机区组设计、完全随机设计和拉丁方设计的区别

嗯,这个问题问得好!明天就知道了~

我还是帮帮你吧~

根据田间试验设计的原则、地块的技术要求和试验场地的具体条件,在试验场地上最合理地设置和安排各试验地块,称为田间试验设计。测试设计是否合理是测试成功的关键之一。常见的田间试验设计根据重复区内小区的排列可分为顺序排列和随机排列两类。

顺序排列是指实验中的所有处理在每个重复区域都按照一定的顺序排列。这种设计的优点是:设计方法简单,便于观察和现场操作,不会出错。排列可以根据受试植物的种类、品种、花期、高度、生长势进行排列,减少边际效应。而且可以在一个实验中容纳大量的处理。缺点是:对测试场地和测试材料要求统一,在土壤等非测试条件存在明显的方向梯度变化时受系统误差影响。更重要的是,不能正确估计检验误差,所以不能用基于概率论的统计分析方法来检验检验结果的显著性。这种设计多用于一些简单的单因素测试、初步测试和演示测试。常用的序贯排列设计包括对比设计和间接比较设计。对比设计的布置特点是每个品种或处理直接布置在对照小区旁边,每两个试验小区设一个对照小区。这种设计适用于不超过10个处理的实验。其优点是测试结果准确性高。该方法直观,易于观察和比较,可用于品种试验后期的生产性试验。缺点是控制区占地过多,试验场地利用率不高。而且还造成了一些人力物力的浪费。对比法设计的排列特点是每个重复区的第一个和最后一个单元格必须是对照单元格,即每两个对照单元格之间排列相同数量的品种或处理单元格,一般为4或8个。与对比法相比,该方法节省实验用地,可容纳更多的处理数,但直观性不如对比法。常用于育种工作初期的鉴定试验和待测品种多但试验准确率低的品种比较试验。

随机排列是指在一个重复区域内每个实验处理和对照的排列是随机的。这种实验设计一般是按照实验设计的三个基本原则来设计的,所以它的优点是:可以克服土壤等非实验因素引起的系统误差的影响,提高实验的正确性,有正确的误差估计,得到的实验结果可以进行显著性检验。其缺点是现场布置不规则,观察和现场操作不方便,一不小心容易出错。随机排列的设计方法主要用于园艺植物的科学实验。因此,我们侧重于随机排列的田间试验设计。

常用的随机田间试验设计包括:完全随机设计、嵌套设计、随机区组设计、拉丁方设计、裂区组设计、正交试验设计等。

首先,完全随机的设计

(一)完全随机设计的概念

假设实验中有k个处理(包括对照),每个处理需要n次重复,则可以将实验地点划分为nk个实验小区(所有测试单元= NK)。将所有试验单元按N的大小随机分成K组,同一组的所有试验单元接受相同的处理(或品种)。这种设计叫做完全随机设计。该设计是一个典型的应用随机性原理的试验设计,真正满足了每个处理或品种在任何试验区都有平等机会设置的要求。具体设计方法如下:

完全随机设计的方法

目前对部分园艺植物进行品种比较试验,拟采用完全随机设计。有A、B、C、D、E五个品种,重复四次。此时,K = 5,N = 4,NK = 5× 4 = 20块试验地(所有试验单元)将试验地分为20块。其现场位置如图2-5所示。数字1到20依次排列。然后一次随机选择四块地排列一个品种,直到五个品种都排列好。(图2-5)。

可以使用抽签或查找随机数表的方法来随机化社区。摇号方法是将1-20住宅区的代号做成一个号码牌,充分混合,多次抽签决定顺序。画个号放回去,然后继续画。如果与上一节抽中的号码相同,则无效。一次抽4个号码排列一个品种。比如第一组抽9,15,18,10排列一个品种;第二组编号为1,13,3,16,排列B品种。诸如此类。查随机数表可以代替摇号,省去摇号程序。比如可以从随机数表的任意行任意列开始读取任意方向的两位数(因为有20个单元格),从尾数中取出1-20范围内的数据(如果消除了重复数,继续读取),然后将读取的数据按顺序分成五组,每组可以排列一个品种。如果到达阅读过程的终点,可以向左、向右或斜向转动继续阅读。现在假设从第10行第9-10列开始读取,结果为:4,6,5,12,13,7,2,3,1,9,20,8,65438+。所以,地块4,6,5,12安排品种A;13,7,2,3地块排列B品种,依此类推,直至排列5个品种。如果是采用局部控制原理的实验设计,各区各处理的随机排列方法同上述抽签法或随机数表法。

完全随机设计得到的观测值为单分组数据。

完全随机设计的优点和缺点

1.完全随机设计的优点:(1)重复次数灵活。每个过程的重复次数可以相等或不相等。设计实验时,只需要按照不同的重复次数分组即可。

图2-5完全随机设计的现场帕累托图

按照不同的重复次数分组就可以了。(2)试验设计和试验结果的统计分析相对简单方便。重复次数相等,采用组内观测次数相同的数据进行方差分析;重复次数不同,对组内不同观测次数的数据进行方差分析。(3)不需要估计缺失面积。(4)最大化估计检验误差的自由度,同时最小化检验显著性所需的临界f,从而提高检验的灵敏度。

2.完全随机设计的缺点

(1)同一品种或处理小区分布不规则、杂乱,不便于观察和记录。

(2)由于不应用局部控制原理,在土壤肥力或试验材料差异较大的情况下,试验误差增大,无法消除。因此,这种试验设计只适合在土壤肥力和试验材料均一的情况下使用,试验田有20块左右。

这种实验设计非常适合实验室、温室和食用菌的实验。

第二,嵌套设计

(一)嵌套设计的概念

如果把研究对象分成几个组,每个组又分成几个亚组,每个亚组又有几个观察设计,就叫嵌套设计。将组分为子组,子组中的几个观测值设计为两级嵌套设计。如果将子群分为若干个子群,子群中的若干个观测值称为三水平嵌套设计。以此类推,可以有多级嵌套设计。

(二)、嵌套设计的方法

在研究某一地区土壤养分含量时,通常是随机抽取几个样地,然后从每个样地随机抽取几个样本,对每个样点的土壤样本进行多次分析,这就是两水平嵌套设计。再比如几种蔬菜种或品种喷洒农药后的残留研究。每种蔬菜可以种在几个盆(或地块)里,每个盆(地块)可以种几株。然后每株分析一次,也是两级嵌套设计。如果对每株植物进行多次分析,则称为三级嵌套设计。

在所有水平的嵌套设计中,至少有一个水平应该是随机的,或随机抽样,或随机排列,否则将得不到无偏的检验误差估计。

最简单的嵌套设计应该是一级嵌套设计。如果几个大白菜品种的单球重存在显著差异,可以从每个品种中随机抽取几个叶球分别称重,然后进行单向分组数据的方差分析。

嵌套设计得到的所有观测值都是组内亚组的单向分组数据,简称系统分组数据,可用于系统分组数据的方差分析。

(三)、嵌套设计的优缺点

1.嵌套设计的优势:

(1)这种设计简单,应用广泛。这种设计既适用于田间试验,也适用于温室和实验室试验。

(2)因为在测试设计中应该至少有一个随机水平,所以可以获得无偏的测试误差估计。一般来说,使用的随机系列越多,测试结果的代表性越强,分析精度越高。

2.嵌套设计的缺点:

(1)由于没有重复,如果组间存在非检验因素效应,则无法识别。因此,在采用嵌套设计时,更应注意保持非实验因素的一致性。

(2)对于随机抽取的样本,样本量要足够大,否则代表性不强,会增加抽样误差,降低分析检验结果的准确性。

第三,随机区组设计

(一)随机区组设计的概念

根据土壤肥力的高低,将试验田分成与重复次数相等的区块,一个区块为一个重复。然后,每个块被细分成与处理数量相等的单元。区组中的过程是随机排列的,这就是随机区组设计。

本设计综合运用了田间试验设计的三个基本原则,是合理的田间试验设计,是随机排列设计中最常用、最基本的试验设计方法之一。

(二)随机区组设计方法

随机区组设计通常采用3-5次重复,根据治疗量和对测试准确度的要求而有所不同。

在随机区组设计中,单元格的排列方法是先对每个处理进行编号,然后通过抽签或随机数表的方式排列每个处理单元格在区组(重复)中的位置。具体方法与完全随机设计中描述的方法相同,不同的是,细胞是按区组随机排列的,每个区组的排列过程都要独立进行。

当区块或重复排列在田间时,应考虑测试的准确性。为了减少试验误差,可以在不同土质差异的不同地段布置不同的试块,同一试块内的土质差异应尽可能小。就地块的形状而言,矩形比较合适,地块组的形状是连接地块的长边,有助于提高测试的准确性。

如果由于试验场地的限制,一次试验中的所有试块不能安排在同一个场地,可以将几个试块放在另一个场地,但同一试块中的所有试块必须安排在一起,决不能分开。下图为比较试验中四个马铃薯品种(A、B、C、D)的田间试验安排。

图2-6随机区组设计(四次重复)

(C)随机区组设计的优点和缺点

1.随机区组设计的优点:

(1)设计简单,容易掌握。测试结果的统计分析相对简单。

(2)灵活,应用广泛,既可用于单因子试验,也可用于多因子试验(多因子试验中,每个小区安排一个处理组合)。

(3)能够提供无偏的试验误差估计,有效控制单向土壤肥力差异,从而减少试验误差。

(4)对考点的大小和形状要求不严格。只要同一块一致,不同块就可以分散。

2.随机区组设计的缺点

(1)处理的次数不能太多,否则会增加阻滞,降低局部控制的效果。一般治疗次数应小于10,最多不超过20次。

(2)两个方向的生育力差异造成的误差无法控制。

四、拉丁广场设计

(一)拉丁广场设计的理念

拉丁方实验从两个方向把实验场地分成块。每条直线(列)和水平线(行)称为块,每个处理在每条直线和水平线中出现一次。所以拉丁方设计的重复数、处理数、直线数、横线数是相等的。简单来说,将K个元素排列成K行K列,使每个元素在每一行每一列只出现一次的实验设计称为拉丁方设计。

第一条水平线和第一条直线依次排列的拉丁方称为标准方。3×3的拉丁方只有一个标准方。随着加工数k的增加,标准方块的数量迅速增加。例如,一个4×4的拉丁正方形有四个标准正方形;5×5拉丁正方形有56个标准正方形,6×6拉丁正方形有9408个标准正方形。

如果一个标准正方形的直线运动与另一个标准正方形的直线运动相同,则这两个标准正方形称为* * *轭。

以下是一些常用的标准方法(表2-2),用于实验设计中的选择和应用。

表2-2常用标准方桌

(二)拉丁方设计法

设计拉丁方时,首先要根据加工数k的大小,从标准方中选择一个k×k的标准方,在选择好标准方的基础上,通过横、直、加工的随机调动,就可以得到一个需要的标准方。一般来说,k×k的每一个标准正方形都可以转化为k!(k-1)!一个不同的拉丁方块。不仅可以通过随机转移得到大量新的拉丁方,而且可以避免标准方的首行首列顺序。如草莓品种有5个,拟采用拉丁方设计进行产量比较试验。现将设计步骤介绍如下:

1.首先用1、2、3、4、5对5个品种进行编号或代换,选出一个5×5的标准正方形。

2.进行直行列车的随机换乘,查随机数表得到随机数1,4,5,3,2。第一行不动;用第四条直线代替第二条直线;将第三条直线改为第五条直线;第四条直线被第三条直线代替;用第二条直线替换第五条直线,得到直线转移后的拉丁方。

3.在直转的基础上,横向进行随机转移。查随机数表,随机数是5,1,2,4,3。将第一行替换为第五行;把第二次遍历改为第一次遍历,把第三次遍历改为第二次遍历,以此类推,你就要把直线和遍历的拉丁面都调动起来。

图2-7五个草莓品种的田间布局

4.最后,对品种进行随机化。查随机数表,得到随机数为2,5,4,1,3。这是A、B、C、D、E的每个群落应该排列的品种代码,即A = 2,B = 5,C = 4,D = 1,E = 3。用品种代码替换两次随机调动的拉丁方块,即可得到5个草莓品种在田间的布局图。

(三)拉丁方设计的优缺点

1.拉丁方设计的优势;

(1)拉丁方设计可以从两个方向控制土壤肥力的差异,精度很高。

(2)通常用于单因素测验,也可用于测验因素和水平较少的复杂因素测验。

2.拉丁方设计的缺点:

(1)重复次数等于加工次数,灵活性不强。如果处理时间长,就会重复太多。当处理的次数少且重复少时,估计误差的自由度太小且精度低。因此,适用于5-8个品种或处理的试验。如果品种或处理数较少,为了提高检验的准确性,可以采用复合拉丁方设计,即一个拉丁方试验可以重复多次。

(2)试验地块要求平整、方正,缺乏随机区组设计的灵活性。